Monge-Ampère Equation with Bounded Periodic Data

Year:    2022

Author:    Yanyan Li, Siyuan Lu

Analysis in Theory and Applications, Vol. 38 (2022), Iss. 2 : pp. 128–147

Abstract

We consider the Monge-Ampère equation det $(D^2u) = f$ in $\mathbb{R}^n,$ where $f$ is a positive bounded periodic function. We prove that $u$ must be the sum of a quadratic polynomial and a periodic function. For $f ≡ 1,$ this is the classic result by Jörgens, Calabi and Pogorelov. For $f ∈ C^α,$ this was proved by Caffarelli and the first named author.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-0022

Analysis in Theory and Applications, Vol. 38 (2022), Iss. 2 : pp. 128–147

Published online:    2022-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    20

Keywords:    Monge-Ampère equation Liouville theorem.

Author Details

Yanyan Li

Siyuan Lu