A Note on the Convergence of the Schrödinger Operator along Curve

Year:    2021

Author:    Junfeng Li, Jun Wang

Analysis in Theory and Applications, Vol. 37 (2021), Iss. 3 : pp. 330–346

Abstract

In this paper we set up a convergence property for the fractional Schödinger operator for $0<a<1$. Moreover, we extend the known results to non-tangent convergence and the convergence along Lipschitz curves.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2021.lu80.04

Analysis in Theory and Applications, Vol. 37 (2021), Iss. 3 : pp. 330–346

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    17

Keywords:    Refinement of the Carleson problem disconvergence set fractional Schrödinger operator Hausdorff dimension Sobolev space.

Author Details

Junfeng Li

Jun Wang

  1. A Survey on the Study of Generalized Schrödinger Operators along Curves

    Li, Wenjuan

    Wang, Huiju

    Xue, Qingying

    Mathematics, Vol. 11 (2022), Iss. 1 P.8

    https://doi.org/10.3390/math11010008 [Citations: 1]