Eigenvalues of a Differential Operator and Zeros of the Riemann $\zeta$-Function

Year:    2020

Author:    Liming Ge, Xian-Jin Li, Dongsheng Wu, Boqing Xue

Analysis in Theory and Applications, Vol. 36 (2020), Iss. 3 : pp. 283–294

Abstract

The eigenvalues of a differential operator on a Hilbert-Pόlya space are determined. It is shown that these eigenvalues are exactly the nontrivial zeros of the Riemann $\zeta$-function. Moreover, their corresponding multiplicities are the same.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-SU1

Analysis in Theory and Applications, Vol. 36 (2020), Iss. 3 : pp. 283–294

Published online:    2020-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    Hilbert-Pόlya space zeros of zeta function differential operator eigenvalue.

Author Details

Liming Ge

Xian-Jin Li

Dongsheng Wu

Boqing Xue