Hausdorff Dimension of a Class of Weierstrass Functions

Year:    2020

Author:    Huojun Ruan, Na Zhang

Analysis in Theory and Applications, Vol. 36 (2020), Iss. 4 : pp. 482–496

Abstract

It was proved by Shen that the graph of the classical Weierstrass function $\sum_{n=0}^\infty \lambda^n \cos (2\pi b^n x)$ has Hausdorff dimension $2+\log \lambda/\log b$, for every integer $b\geq 2$ and every $\lambda\in (1/b,1)$ [Hausdorff dimension of the graph of the classical Weierstrass functions, Math. Z., 289 (2018), 223–266]. In this paper, we prove that the dimension formula holds for every integer $b\geq 3$ and every $\lambda\in (1/b,1)$ if we replace the function $\cos$ by $\sin$ in the definition of Weierstrass function. A class of more general functions are also discussed.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-SU8

Analysis in Theory and Applications, Vol. 36 (2020), Iss. 4 : pp. 482–496

Published online:    2020-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:    Hausdorff dimension Weierstrass function SRB measure.

Author Details

Huojun Ruan

Na Zhang