A Note on Weak Type $(1,1)$ Estimate for the Higher Order Commutators of Christ-Journé Type

Year:    2019

Analysis in Theory and Applications, Vol. 35 (2019), Iss. 3 : pp. 268–287

Abstract

In this paper, a weak type $(1,1)$ estimate is established for the higher order commutator introduced by Christ and Journé which is defined by

$$ T[a_1,\cdots,a_l]f(x)=p.v. \int_{R^d} K(x-y)\Big(\prod_{i=1}^lm_{x,y}a_i\Big)\cdot f(y)dy, $$

where $K$ is the standard Calderόn-Zygmund convolution kernel on $\mathbb{R}^d (d\geq2)$ and $m_{x,y}a_i=\int_0^1a_i(sx+(1-s)y)ds$.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-0007

Analysis in Theory and Applications, Vol. 35 (2019), Iss. 3 : pp. 268–287

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    20

Keywords:    Weak type $(1 1)$ higher order commutator.