Vector Solutions with Prescribed Component-Wise Nodes for a Schrödinger System

Year:    2019

Analysis in Theory and Applications, Vol. 35 (2019), Iss. 3 : pp. 288–311

Abstract

For the Schrödinger system

$$\left\{\begin{array}{ll}-\Delta u_j +\lambda_j u_j =\sum\limits_{i=1}^k \beta_{ij} u_i^2 u_j\quad \mbox{in}\ \ \ \ \mathbb R^N,\\ u_j(x)\to0\quad\text{ as }\ \ |x|\to\infty,  j=1,\cdots,k,\end{array}\right.$$

where $k\geq 2$ and $N=2, 3$, we prove that for any $\lambda_j>0$ and $\beta_{jj}>0$ and any positive integers $p_j$, $j=1,2,\cdots,k$, there exists $b>0$ such that if $\beta_{ij}=\beta_{ji}\leq b$ for all $i\neq j$ then there exists a radial solution $(u_1,u_2,\cdots,u_k)$ with $u_j$ having exactly $p_j-1$ zeros. Moreover, there exists a positive constant $C_0$ such that if $\beta_{ij}=\beta_{ji}\leq b\ (i\neq j)$ then any solution obtained satisfies

$$\sum_{i,j=1}^k|\beta_{ij}|\int_{\mathbb R^N}u_i^2u_j^2\leq C_0.$$

Therefore, the solutions exhibit a trend of phase separations as $\beta_{ij}\to-\infty$ for $i\neq j.$

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-0009

Analysis in Theory and Applications, Vol. 35 (2019), Iss. 3 : pp. 288–311

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    24

Keywords:    Vector solution prescribed component-wise nodes Schrödinger system variational methods.

  1. Multiple nodal solutions having shared componentwise nodal numbers for coupled Schrödinger equations

    Li, Haoyu | Wang, Zhi-Qiang

    Journal of Functional Analysis, Vol. 280 (2021), Iss. 7 P.108872

    https://doi.org/10.1016/j.jfa.2020.108872 [Citations: 3]
  2. The number of positive solutions for n$n$‐coupled elliptic systems

    Jing, Yongtao | Liu, Haidong | Liu, Yanyan | Liu, Zhaoli | Wei, Juncheng

    Journal of the London Mathematical Society, Vol. 110 (2024), Iss. 6

    https://doi.org/10.1112/jlms.70040 [Citations: 0]
  3. Ground state solutions for planar coupled system involving nonlinear Schrödinger equations with critical exponential growth

    Wei, Jiuyang | Lin, Xiaoyan | Tang, Xianhua

    Mathematical Methods in the Applied Sciences, Vol. 44 (2021), Iss. 11 P.9062

    https://doi.org/10.1002/mma.7335 [Citations: 4]
  4. A coupled Schrödinger system with critical exponent

    Liu, Haidong | Liu, Zhaoli

    Calculus of Variations and Partial Differential Equations, Vol. 59 (2020), Iss. 5

    https://doi.org/10.1007/s00526-020-01803-8 [Citations: 10]
  5. Infinitely many nodal solutions of Kirchhoff-type equations with asymptotically cubic nonlinearity without oddness hypothesis

    Li, Fuyi | Zhang, Cui | Liang, Zhanping

    Calculus of Variations and Partial Differential Equations, Vol. 63 (2024), Iss. 7

    https://doi.org/10.1007/s00526-024-02805-6 [Citations: 0]
  6. Infinitely many nodal solutions for a class of quasilinear elliptic equations

    Yang, Xiaolong

    Electronic Journal of Qualitative Theory of Differential Equations, Vol. (2021), Iss. 32 P.1

    https://doi.org/10.14232/ejqtde.2021.1.32 [Citations: 0]
  7. Infinitely Many Nodal Solutions for Kirchhoff-Type Equations with Non-odd Nonlinearity

    Li, Fuyi | Zhang, Cui | Liang, Zhanping

    Qualitative Theory of Dynamical Systems, Vol. 23 (2024), Iss. 1

    https://doi.org/10.1007/s12346-023-00857-1 [Citations: 0]
  8. Nontrivial solutions for an elliptic system of Hamiltonian type

    Zhi, Yanyan | Liu, Xiaochun

    Applicable Analysis, Vol. 101 (2022), Iss. 14 P.5017

    https://doi.org/10.1080/00036811.2021.1877684 [Citations: 0]