Weighted Integral Means of Mixed Areas and Lengths Under Holomorphic Mappings

Weighted Integral Means of Mixed Areas and Lengths Under Holomorphic Mappings

Year:    2014

Analysis in Theory and Applications, Vol. 30 (2014), Iss. 1 : pp. 1–19

Abstract

This note addresses monotonic growths and logarithmic convexities of the weighted ($(1-t^2)^\alpha dt^2$, $-\infty <\alpha <\infty$, $0< t< 1$) integral means $\mathsf{A}_{\alpha,\beta}(f,\cdot)$ and $\mathsf{L}_{\alpha,\beta}(f,\cdot)$ of the mixed area $(\pi r^2)^{-\beta}A(f,r)$ and the mixed length $(2\pi r)^{-\beta}L(f,r)$($0\le\beta\le 1$ and $0< r< 1$) of $f(r\mathbb D)$ and $\partial f(r\mathbb D)$ under a holomorphic map $f$ from the unit disk $\mathbb D$ into the finite complex plane $\mathbb C$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2014.v30.n1.1

Analysis in Theory and Applications, Vol. 30 (2014), Iss. 1 : pp. 1–19

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    19

Keywords:    Monotonic growth logarithmic convexity mean mixed area mean mixed length isoperimetric inequality holomorphic map univalent function.

  1. Area integral means over the annuli

    Wang, Chunjie | Yang, Wenjie

    Journal of Mathematical Analysis and Applications, Vol. 473 (2019), Iss. 1 P.510

    https://doi.org/10.1016/j.jmaa.2018.12.064 [Citations: 2]
  2. Saigo-Maeda Operators Involving the Appell Function, Real Spectra from Symmetric Quantum Hamiltonians and Violation of the Second Law of Thermodynamics for Quantum Damped Oscillators

    El-Nabulsi, Rami Ahmad

    International Journal of Theoretical Physics, Vol. 59 (2020), Iss. 12 P.3721

    https://doi.org/10.1007/s10773-020-04627-6 [Citations: 4]
  3. LOGARITHMIC CONVEXITY OF AREA INTEGRAL MEANS FOR ANALYTIC FUNCTIONS II

    WANG, CHUNJIE | XIAO, JIE | ZHU, KEHE

    Journal of the Australian Mathematical Society, Vol. 98 (2015), Iss. 1 P.117

    https://doi.org/10.1017/S1446788714000457 [Citations: 7]
  4. A new approach to nonlinear quartic oscillators

    El-Nabulsi, Rami Ahmad | Anukool, Waranont

    Archive of Applied Mechanics, Vol. 92 (2022), Iss. 1 P.351

    https://doi.org/10.1007/s00419-021-02062-5 [Citations: 6]
  5. Convexity of area integral means for analytic functions

    Peng, Weiqiang | Wang, Chunjie | Zhu, Kehe

    Complex Variables and Elliptic Equations, Vol. 62 (2017), Iss. 3 P.307

    https://doi.org/10.1080/17476933.2016.1218857 [Citations: 1]
  6. Path Integral Formulation of Fractionally Perturbed Lagrangian Oscillators on Fractal

    El-Nabulsi, Rami Ahmad

    Journal of Statistical Physics, Vol. 172 (2018), Iss. 6 P.1617

    https://doi.org/10.1007/s10955-018-2116-8 [Citations: 89]
  7. Addendum to “Gaussian Integral Means of Entire Functions”

    Wang, Chunjie | Xiao, Jie

    Complex Analysis and Operator Theory, Vol. 10 (2016), Iss. 3 P.495

    https://doi.org/10.1007/s11785-015-0447-x [Citations: 5]