On Double Sine and Cosine Transforms, Lipschitz and Zygmund Classes

On Double Sine and Cosine Transforms, Lipschitz and Zygmund Classes

Year:    2011

Author:    Vanda Fülöp, Ferenc Mόricz

Analysis in Theory and Applications, Vol. 27 (2011), Iss. 4 : pp. 351–364

Abstract

We consider complex-valued functions $f \in  L^1(\mathbf{R}^2_+)$, where $\mathbf{R}_+ := [0,\infty)$, and prove sufficient conditions under which the double sine Fourier transform $\hat{f}_{ss}$ and the double cosine Fourier transform $\hat{f}_{cc}$  belong to one of the two-dimensional Lipschitz classes $Lip(\alpha,\beta )$ for some $0 < \alpha,\beta \leq 1$; or to one of the Zygmund classes Zyg$(\alpha,\beta )$ for some $0 < \alpha,\beta  \leq 2$. These sufficient conditions are best possible in the sense that they are also necessary for nonnegative-valued functions $f \in L^1(\mathbf{R}^2_+)$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.1007/s10496-011-0351-9

Analysis in Theory and Applications, Vol. 27 (2011), Iss. 4 : pp. 351–364

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    14

Keywords:    double sine and cosine Fourier transform Lipschitz class Lip$(\alpha \beta)$ $0< \alpha \beta \leq 1$ Zygmund class Zyg$(\alpha $0 < \alpha \beta \leq 2$.

Author Details

Vanda Fülöp

Ferenc Mόricz

  1. Boas Type Results for Two-Sided Quaternion Fourier Transform and Uniform Lipschitz Spaces

    Volosivets, Sergey

    Complex Analysis and Operator Theory, Vol. 18 (2024), Iss. 3

    https://doi.org/10.1007/s11785-024-01491-8 [Citations: 0]
  2. Dual Boas Type Results for the Quaternion Transform and Generalized Lipschitz Spaces

    Volosivets, Sergey

    Advances in Applied Clifford Algebras, Vol. 33 (2023), Iss. 5

    https://doi.org/10.1007/s00006-023-01301-y [Citations: 0]