Year: 2021
Author: Zhidan Wang, Huoxiong Wu, Qingying Xue
Analysis in Theory and Applications, Vol. 37 (2021), Iss. 3 : pp. 404–425
Abstract
Let $I_{\alpha,\vec{b}}$ be the multilinear commutators of the fractional integrals $I_{\alpha}$ with the symbol $\vec{b}=(b_1, \cdots,b_k )$. We show that the constant of borderline weighted estimates for $I_{\alpha}$ is $\frac{1}{{\varepsilon}}$, and for $I_{\alpha,{\vec{b}}}$ is $\frac{1}{{\varepsilon}^{k+1}}$ with each $b_i$ belongs to the Orlicz space $Osc_{\exp L^{s_i}}$.
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/ata.2021.lu80.08
Analysis in Theory and Applications, Vol. 37 (2021), Iss. 3 : pp. 404–425
Published online: 2021-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 22
Keywords: Commutators fractional integrals borderline weighted estimates Fefferman-Stein inequality.