Borderline Weighted Estimates for Commutators of Fractional Integrals

Year:    2021

Author:    Zhidan Wang, Huoxiong Wu, Qingying Xue

Analysis in Theory and Applications, Vol. 37 (2021), Iss. 3 : pp. 404–425

Abstract

Let $I_{\alpha,\vec{b}}$ be the multilinear commutators of the fractional integrals $I_{\alpha}$ with the symbol $\vec{b}=(b_1,  \cdots,b_k  )$. We show that the constant of borderline weighted estimates for $I_{\alpha}$ is $\frac{1}{{\varepsilon}}$, and for $I_{\alpha,{\vec{b}}}$ is $\frac{1}{{\varepsilon}^{k+1}}$ with each $b_i$ belongs to the Orlicz space $Osc_{\exp L^{s_i}}$.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2021.lu80.08

Analysis in Theory and Applications, Vol. 37 (2021), Iss. 3 : pp. 404–425

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    22

Keywords:    Commutators fractional integrals borderline weighted estimates Fefferman-Stein inequality.

Author Details

Zhidan Wang

Huoxiong Wu

Qingying Xue